Inhibition of the janus kinase family increases extracellular signal-regulated kinase 1/2 phosphorylation and causes endoreduplication.
نویسندگان
چکیده
The role of Janus-activated kinase (JAK) signaling in cell cycle transit and maintenance of genomic stability was determined in HL-60 myeloblastic leukemia cells. Inhibition of JAKs, all JAKs (JAK1, JAK2, JAK3, and tyrosine kinase 2), JAK2, or JAK3, caused a significant reduction in cell growth with a major G2-M arrest evident 24 hours after treatment. Targeting all JAKs also caused endoreduplication 48 and 72 hours after treatment. We discovered mitotic cells in both G2 (4N DNA) and G4 (8N DNA) subpopulations of cells treated with an inhibitor of all JAKs as detected by phosphorylated histone H3 expression. Treatment with inhibitors of just JAK2 or JAK3 drastically reduced such mitotic cells. We observed a complete blockage of IFN-gamma and interleukin-6-induced signal transducer and activator of transcription (STAT)-1 and STAT-3 response when all JAKs were inhibited. At the same time, we found baseline phosphorylated extracellular signal-regulated kinase (ERK) 1/2 to be elevated by JAK inhibition, particularly when all JAKs were inhibited. The G2-M arrest and endoreduplication induced by JAK inhibitors were reduced in cells pretreated with PD98059 to inhibit ERK. PD98059 also increased back the expression of the MAD2 cell cycle checkpoint protein that was down-regulated during "all JAKs inhibitor"-mediated endoreduplication. These data suggest that JAK signaling is needed for G2-M transit with inhibition of ERK.
منابع مشابه
Inhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)
Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...
متن کاملJAK-STAT pathway and JAK inhibitors: a primer for dermatologists
Background: All cellular events depend upon the DNA synthesis and gene expression involving complex interplay between ligands such as interleukins and interferons, with various cell membrane receptors. These ligand-receptors interactions transmit signals within the cell via numerous signal transduction pathways to affect gene expression. Janus kinase/signal transducer and activator of transcrip...
متن کاملThe JAK inhibitor AZD1480 regulates proliferation and immunity in Hodgkin lymphoma
Aberrant activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway has been reported to promote proliferation and survival of Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma (HL). We investigated the activity of the JAK inhibitor AZD1480 in HL-derived cell lines and determined its mechanisms of action. AZD1480 at low doses (0.1-1 μ) potently inhib...
متن کاملRole of the Protein Kinase C- –Raf-1–MEK-1/2–p44/42 MAPK Signaling Cascade in the Activation of Signal Transducers and Activators of Transcription 1 and 3 and Induction of Cyclooxygenase-2 After Ischemic Preconditioning
Background—Although Janus kinase (JAK)–mediated Tyr phosphorylation of signal transducers and activators of transcription (STAT) 1 and 3 is essential for the upregulation of cyclooxygenase-2 (COX-2) and the cardioprotection of late preconditioning (PC), the role of Ser phosphorylation of STAT1 and STAT3 in late PC and the upstream signaling mechanisms responsible for mediating Ser phosphorylati...
متن کاملAnti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells
Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes. This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 18 شماره
صفحات -
تاریخ انتشار 2006